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Endocrine-disrupting chemicals, such as the plasticizer bisphenol
A (BPA), may perturb the timing of human puberty.1,2 A study in
Environmental Health Perspectives3 demonstrates that even low
doses of BPA accelerate puberty onset in female mice and identi-
fies potential mechanisms that may explain this observation.

Peptides such as neurokinin B (NKB) and the family of kisspep-
tins are essential regulators of puberty in rodents and humans.4 In
mice, the Kiss1 gene is expressed in the neurons of two adjacent,
functionally distinct hypothalamic regions: the rostral periventricu-
lar region of the third ventricle (RP3V) and the arcuate nucleus
(ARC).5,6 ARCneurons also expressTac2, which encodesNKB.7

As part of the hypothalamic–pituitary–gonadal axis, the Kiss1/
NKB system controls the production of gonadotropin-releasing
hormone. This molecular switch stimulates the pituitary gland to
secrete gonadotropins, which regulate the production of sperm and
egg follicles.6 The ARC neurons likely play a broader role in regu-
lating puberty, while the RP3V neurons also control ovulation after
sexual maturation.4,8

Improvements in nutrition likely explain some of the observed
decrease in the average age at menarche between 1890 and 1960 in
Europe and the United States.9 However, secular changes in pu-
berty onset are complex. Childhood obesity may explain some but
not all of the trend toward earlier breast development in girls,10

while the distribution of menarcheal age has shifted toward late-
ness in some populations.9 Similar divergent effects on initial and
final pubertal stages have been observed in boys.1 This suggests a
contribution of environmental factors, perhaps including BPA ex-
posure from food and beverage containers, toys, and office prod-
ucts.11,12 BPA’s ability to disrupt the kisspeptin system supports
this hypothesis. 13,14

The new study is an international collaboration directed by
Manuel Tena-Sempere at the University of Córdoba, Spain, and

GianCarlo Panzica at the University of Torino, Italy. “Given pre-
vious findings, we wanted to study the effect of low-dose perinatal
BPA exposure on vaginal opening, a phenotypic marker of puberty
onset in female mice,” says Tena-Sempere. “We also wanted to
correlate this phenotypic effect with changes in the Kiss1/NKB
system at the level of mRNA and protein.”

For their study, the research team exposed four groups of 10
pregnant mice to vehicle (control) or three different doses of BPA.
All orally administered BPA doses (5, 10, and 40 lg=kg per day)
were below current human safety levels set by European and U.S.
regulatory agencies. From the female offspring of the 40 litters, the
researchers collected vaginal opening data and blood and brain
samples at multiple time points for hormone measurements, gene
expression, and protein analysis.

Compared with controls, all three exposed groups had a signifi-
cantly earlier age of vaginal opening. Similar to other BPA stud-
ies,15,16 the lowest and highest exposure levels had similar outcomes
while the effect of the intermediate dosewas less pronounced.

BPA reduced circulating levels of gonadotropins and had
divergent effects on the two neuronal populations. Although
effects varied somewhat by age, all three exposure levels resulted
in more kisspeptin neurons in the RP3V but lower kisspeptin
immunoreactivity in the ARC. Reduced Kiss1 and Tac2 gene
expression levels were also observed in the ARC. These distinct
effects on important regulators of sexual maturation might
explain why BPA advances some manifestations of puberty while
delaying others, says Tena-Sempere.

Panzica notes a positive feedback of RP3V neurons to estro-
gens in physiological conditions, in contrast to a negative feedback
for ARC neurons.17 The underlying mechanism may involve pro-
gesterone signaling.18 “Present results indicate that this differential
sensitivity is probably established early during the development
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and this may explain the different effects of BPA on the two hypo-
thalamic nuclei,” Panzica says.

For Anne-Simone Parent, an associate professor of pediatric
endocrinology at the University of Liège in Belgium, the new
study has multiple strengths. “The BPA doses mimic human ex-
posure, and the comprehensive analysis illustrates the exquisite
sensitivity of the Kiss1/NKB system to endocrine disruptors,”
says Parent, who was not involved in the work. “Detecting brain
region–specific BPA effects is a novel contribution and a poten-
tial explanation for the abnormal programming of puberty.”

The distribution of pubertal onset, Parent adds, is an impor-
tant marker of reproductive health at the population level. For
individuals, puberty disruptions may have downstream effects,
such as irregular estrous cycles and compromised adult fertility.19

For Heather Patisaul, a professor of biological sciences at
North Carolina State University who also was not involved in the
research, the study offers compelling evidence that even low doses
of BPA may have significant effects on puberty in girls. “To me, it
is becoming unavoidably obvious that our environment is changing
the human trajectory, including the timing of sexual maturation,”
Patisaul says. “A key strength of this paper is its mechanistic focus,
which elegantly addresses the ‘why’ question.”

Silke Schmidt, PhD, writes about science, health, and the environment from
Madison, Wisconsin.
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